

Variations in Edge and SOL Turbulence in NSTX

S.J. Zweben^{1*}, W.M. Davis¹, S.M. Kaye¹, J.R. Myra², R.E. Bell¹,
B.P LeBlanc¹, R.J. Maqueda^{1**}, T. Munsat³, S.A. Sabbagh⁴,
Y. Sechrest³, D.P. Stotler¹, and the NSTX Team

¹Princeton Plasma Physics Laboratory, Princeton NJ 08540 USA
 ²Lodestar Research Corporation, Boulder, CO, USA
 ³Department of Physics, Univ. of Colorado, Boulder CO 80309 USA
 ⁴ Dept. of Appl. Phys. and Appl. Math, Columbia Univ., New York, NY10026 USA

<u>*szweben@pppl.gov</u> **presently at X Science LLC, Plainsboro, NJ 08543 USA This work was supported by USDOE Contract #DE-AC02-09CH11466

TTF meeting, Salem MA, Thurs. Apr. 30, 2015, poster #12

Abstract

This poster describes the range of variations in edge and SOL turbulence observed using a gas puff imaging (GPI) diagnostic in NSTX discharges. The database consists of 140 shots including Ohmic, L-mode, and H-mode plasmas measured during steadystate conditions (e.g. without ELMs). Turbulence quantities were evaluated using both cross-correlation analysis and blob tracking. Relative fluctuation levels varied from dl/l~15-100%, correlation times were t_{auto} ~15-40 µsec, correlation lengths were $L_{pol} \sim L_{rad} \sim 5-10$ cm, and turbulence velocities were $V_{pol} \sim 2\pm 1$ km/sec and V_{rad}~0.5±0.5 km/sec outward. These variations were evaluated with respect to both the global and local edge plasma parameters, and compared with simplified theoretical models.

Gas Puff Imaging (GPI) Diagnostic on NSTX

- D₂ gas puffed from GPI manifold on outer wall above midplane
- Dα light emission from gas puff viewed from along local B field
- Fluctuations in $D\alpha$ light emission interpreted as edge turbulence

Time Dependence of GPI Signals

- GPI gas puffed once during shot and seen by local $D\alpha$ emission
- Time of analysis for this database is ±5 msec around GPI peak

Typical Camera Images from GPI in NSTX

- Image data first normalized by average of images over 1 msec
- Positive excursions \geq 1.5 normalized signal are tracked as blobs

Selection of Shots for the GPI Database

- Taken from 17 different XPs in 2010, H-mode, Ohmic, and L-mode
- All diverted deuterium plasmas, almost all (93%) lower-single-null
- Time of interest during steady-state with no transient events, i.e. no large ELMs, MHD, power variations, or L-H transitions
- B field line angle suitable for GPI (i.e. $I_p/B_t = 0.2\pm0.05$ MA/kG)
- GPI data taken at fastest possible rate of 400,000 frames/sec
- Outer midplane separatrix at least 3 cm inside GPI field of view

NSTX GPI Database from 2010 Run

Overall database

Sample plasmas used for profiles

Number of shots	140		<u>H-mode</u>	<u>Ohmic</u>
H-mode	93	shot range	140389-395	141746-756
Ohmic	33	time (sec)	0.532	0.215
L-mode	14	I _p (kA)	830	830
Plasma current:	I _p =0.65-1.15 MA	B _t (kG)	4.9	3.6
Toroidal field:	B _t =3.5-5.5 kG	W _{mhd} (kJ)	220	32
safety factor:	q ₉₅ = 5.8-12.8	n _e (10¹³ cm⁻³)	5.2	1.6
Elongation	k=1.8-2.5	P _{nb} (MW)	4.0	0
Stored energy:	W _{mhd} =26-306 kJ	T _e (0) (eV)	920	530
Average density:	n _e =1.3-7.0x10 ¹³ cm ⁻³	n _e (0) (10 ¹³ cm ⁻³)	5.6	2.3
NBI heating:	P _{nb} = 0-6 MW	T _e (a) (eV)	29±17	13±6
RF heating:	P _{rf} = 0-1.4 MW	n _e (a) (10 ¹³ cm ⁻³)	0.92±0.54	0.37±0.23
Outer gap:	2.8-15.7 cm	T _e @ -2 cm (eV)	134±53	23±4
Lithium:	0-370 mg/shot	n _e @ -2 cm (/10 ¹³)	2.1±0.47	0.47±0.17

Sample Edge Profiles in NSTX

- Te and ne profiles from Thomson scattering (7 shots each)
- GPI profiles from average $D\alpha$ over time near peak time

Turbulence and Blob Data Analysis

- Image data first normalized by average of images over \geq 1 msec
- **Turbulence analysis** uses standard cross-correlation methods, averaging results over ±5 msec around peak of GPI signal
- Blob analysis tracks structures with height ≥ 1.5 x average height at that spatial position, averaging over ±5 msec as above
- Results binned near -2 cm, 0 cm, +2 cm, +4 cm from separatrix
- Sometimes shots are segregated into H-mode, Ohmic, L-mode

Sample of Database Results and Analysis

- Turbulence amplitudes $\delta I/I$
- Blob amplitudes N_{blob} and A_{blob}
- Turbulence size scales L_{pol} and L_{rad}
- Blob size scales blob L_{pol} and blob L_{rad}
- Poloidal turbulence and blob velocity V_{pol} and blob V_{pol}
- Radial turbulence and blob velocity V_{rad} and blob V_{rad}
- Cross-correlation and regression analysis τ_{auto} and blob lifetime

whole database can be found at: http://w3.pppl.gov/~szweben/NSTX2013/NSTX2013.html

Turbulence Amplitudes

11

Blob Amplitudes

Turbulence Length Scales

Blob Length Scales

Turbulence and Blob Poloidal Velocity

Turbulence and Blob Radial Velocity

Correlation Times and Blob Lifetimes

- Turbulence autocorrelation time increases with minor radius
- Autocorrelation time $\tau_{auto} \sim L_{pol}/V_{pol}$, approx. "frozen flow"
- Total blob lifetime in GPI viewing region ~ τ_{auto}

Turbulence Cross-Correlation Coefficients

showing only cases with ≥50% cross-correlation coefficient

	radius	B _t	P _{nb}	W _{mhd}	n _e -ave	Li/sh	edge n _e	к
δI/I	-2 cm	0.53	0.57	0.63	0.69	-	0.62	-
	+2 cm	-	0.66	0.63	0.63	0.54	0.64	-
$ au_{ m auto}$	-2 cm	-	0.61	0.60	0.65	-	-	-
	+2 cm	-	-	-	-	-	-	-
L _{pol}	-2 cm	-	0.65	0.65	0.61	0.52	0.55	0.53
_	+2 cm	-	-	0.54	-	0.51	-	0.55
L _{rad}	-2 cm	-	-	-	0.54	-	0.61	-
	+2 cm	-	-	-	-	-	-	-
V _{pol}	-2 cm	-	0.63	0.69	0.68	0.59	0.53	-
	+2 cm	-	-	-	-	-	-	-
V _{rad}	-2 cm	-	-	-	-	-	-	-
	+2 cm	-	-	-	-	-	-	-

Power Law Exponents for Turbulence

Single parameter (pair wise) exponents

	radius	B _t	W _{mhd}	n _e -ave	Li/shot	edge n _e	к
δI/I	-2 cm	-1.7±0.29	-0.32 ± 0.03	-0.52 ± 0.05	-	-0.30 ± 0.03	-
	+2 cm	-	-0.39 ± 0.04	-0.61±0.07	-0.12 ± 0.02	-0.37 ± 0.03	-
$ au_{ m auto}$	-2 cm	-	0.39±0.03	0.62±0.05	-	-	-
	+2 cm	-	-	-	-	-	-
L _{pol}	-2 cm	-	0.37±0.03	0.55±0.05	0.09±0.01	0.29±0.04	2.92 ± 0.04
-	+2 cm	-	0.23 ± 0.03	-	-	-	2.42 ± 0.31
L _{rad}	-2 cm	-	-	0.64 ± 0.07	-	0.36±0.04	-
	+2 cm	-	-	-	-	-	-

Multiple parameter (regression) exponents

	radius	I _p	B _t	ne-ave	Li/shot	W_{mhd}	к	dn_e/dR
δΙ/Ι	-2 cm	-	-0.88±0.31		-	-	-	-0.15±0.06
	+2 cm	-	-	-0.22±0.07	-	-	-	-
$ au_{ m auto}$	-2 cm	-	-	0.45±0.14	-	-	-	-
	+2 cm	0.97±0.24	-	0.41±0.13	-	-	-	-
L_{pol}	-2 cm	-0.62±.20	-	-	-	-	1.43±0.41	-
1	+2 cm	-	-0.80±0.30	-	-	-	1.52±0.44	-
L _{rad}	-2 cm	-	-	-	0.08±0.02	-	-	-
	+2 cm	-	-	-	0.04±0.01	0.25±0.08	1.73±0.34	0.17±0.05

Summary of Some Turbulence Variations

difficult to briefly summarize all the observed variations

- Relative fluctuation level increases with radius, but decreases with density, total stored energy, and edge T_e and grad P_e
- Poloidal and radial turbulence scale lengths are roughly constant vs. radius and within a factor-of-two of each other
- Poloidal velocity IDD except for EDD in Ohmic inside separatrix, and independent of density, stored energy, and P_{nb}
- Radial turbulence speed outward at 0-1 km/sec
- Blob properties generally similar to turbulence properties

Turbulence Amplitude vs. Theory

- Expect for saturation by wave breaking: $\delta n/n \sim 1/k_{rad}L_n$
- Expect for saturation of interchange modes: $\delta n/n \sim V_{rad} \omega/L_n$
- Assume k_{rad} ~ 2/L_{rad}, $\omega \sim 2/\tau_{auto}$, $\delta n/n \sim \delta I/I$ for GPI at ρ = -2 cm
- Measured $\delta I/I$ are below these limits, especially for H-mode

Turbulence Length Scales vs. Theory

- Drift wave turbulence models have typically $k_{pol} \rho_s \approx 0.3$
- Interchange turbulence typically has $L_{rad} \sim L_{p(ressure)}$
- Measured size scales are ~3-5 times larger than these

Turbulence Poloidal Velocity vs. Theory

- Expect drift waves have $V_{pol} = \pm V_{drift} = \pm c_s \rho_s / L_n$ in rest frame
- At ρ = -2 cm, V_{pol} (OH) is close to V_{d,e}, but V_{pol} (H) ~ (1/3) V_{d,i}

Ion V_{pol} in H-mode may be due to:

- 1) shift from e⁻ to i⁺ drift waves
- 2) increased outward E_{rad}
- 3) NBI-induced toroidal rotation V_{pol} (NBI) ~ (B_p/B_t) V_{tor} V_{pol} (NBI) ~ - 1-10 km/sec (?)

Blob Radial Velocity vs. Theory

- Sheath-limited radial blob velocity: $V_{sl} = c_s (L_{ll}/R) (\rho_s/\delta_b)^2 (\delta n/n)$
- Inertial regime radial blob velocity: $V_{in} = c_s (\delta_b/R)^{1/2} (\delta n/n)^{1/2}$
- Assume T_e from ρ = 0 cm, $\delta_b \sim L_{pol}/2$, R=150 cm, $\delta n/n \sim \delta l/l$
- Measured blob V_{rad} @ ρ = +2 cm lies between V_{sl} and V_{in}

Summary of Comparisons with Theory

- Amplitudes of turbulence $\delta I/I$ at $\rho = -2$ cm in H-mode are lower than expected from simple theoretical estimates
- Poloidal turbulence size scale L_{pol} at ρ = -2 cm is in between simple drift-wave and interchange scale lengths
- Poloidal speed of turbulence V_{pol} at ρ = -2 cm is about x3 lower than diamagnetic drift velocities
- Radial blob speed V_{rad} from GPI at ρ = +2 cm is in between estimates based on sheath limited and inertial range models
 - => partial consistency with drift-wave and interchange estimates

see Myra poster P13 for further theory analysis of database

Some New or Surprising Results

- No significant increase in the poloidal turbulence velocity with increased NBI power over P_{nb}~2-6 MW in H-mode plasmas
- The local radial correlation lengths just inside the separatrix in H-mode plasmas were ~2-5 times larger than the local density gradient scale, which seems inconsistent with drift wave theory
- There was relatively little variation of the turbulence or blob properties with respect to plasma current or toroidal field
- Although not new, there was a surprisingly clear reversal in poloidal turbulence velocity with radius in Ohmic plasmas
- Near absence of blobs inside the separatrix for H-mode plasmas

Overall Summary and Conclusions

- Edge and SOL fluctuation levels large in all shots in database, $\delta I/I \ge 15\%-100\%$
- Turbulence correlation analysis and blob tracking analysis give similar results in almost all cases
- Could not find clear empirical scalings of turbulence variations with respect to global plasma or edge parameters
- Partial consistency with drift wave / interchange / blob models

Conclusion is that edge turbulence is not well understood